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A new frequency–luminosity relation for long gamma-ray bursts?
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ABSTRACT
We have studied power density spectra (PDS) of 206 long gamma-ray bursts. We fitted the PDS
with a simple power law and extracted the exponent of the power law (α) and the noise-crossing
threshold frequency (f th). We find that the distribution of the extracted α peaks around −1.4
and that of f th around 1 Hz. In addition, based on a subset of 58 bursts with known redshifts, we
show that the redshift-corrected threshold frequency is positively correlated with the isotropic
peak luminosity. The correlation coefficient is 0.57 ± 0.03.

Key words: gamma-ray burst: general.

1 IN T RO D U C T I O N

Gamma-ray bursts (GRBs) show very complicated time profiles and,
despite extensive investigations, are still not fully understood. The
Fourier power density spectrum (PDS) of GRBs, on the other hand,
seems to show relatively simple behaviour. Giblin, Kouveliotou &
van Paradijs (1998) found that a typical PDS shows a low-frequency
power-law component and a high-frequency flat component (usu-
ally associated with Poisson noise). Beloborodov, Stern & Svensson
(1998, 2000) considered each GRB as a realization of some com-
mon stochastic process and showed that when averaged over many
bursts the resulting PDS exhibits a power-law behaviour with an
exponent of −1.67, which the authors note is consistent with the
−5/3 Kolmogorov spectral index expected from processes involv-
ing turbulent flow. In addition, they claim that there is a break in
the averaged PDS at ∼1 Hz. The authors were not in a position to
correct their sample for the time dilation due to the cosmological
redshifts.

Lazzati (2002) analysed GRB power spectra by dividing them
into six luminosity bins using the variability–luminosity correlation
(Fenimore & Ramirez-Ruiz 2000; Reichart et al. 2001; Guidorzi
2005; Guidorzi et al. 2005, 2006; Li & Paczyński 2006; Rizzuto
et al. 2007). The PDS was averaged in each bin after correcting for
pseudo-redshifts obtained through the variability–luminosity rela-
tion (Fenimore & Ramirez-Ruiz 2000). Lazzati (2002) showed that
the dominant frequency (f d) of the PDS is strongly correlated with
the variability parameter obtained by taking a modified variance of
the detrended light curve (LC; Fenimore & Ramirez-Ruiz 2000).
Here f d is obtained by finding the maximum of the function f ×
PDS (f ) (see Lazzati 2002 for more details). The author further
states that the red-noise component of the averaged PDS for the six
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luminosity bins is well described by a broken power-law function
with a low-frequency slope of −2/3 and a high-frequency slope of
−2. In this case, the break frequency is a function of both luminosity
and the variability parameter.

Borgonovo et al. (2007) did a similar analysis of power spectra
but used measured redshift information to correct for time dila-
tion effects before averaging. The burst sample was subdivided into
two populations based on the calculated values of the autocorrela-
tion function. After averaging, the PDS of one population shows
a power-law index of ∼−2.0 (consistent with the spectral index
expected of Brownian motion) and the PDS of the other population
is characterized by a low-frequency exponentially decaying com-
ponent and a high-frequency power-law component with an index
of ∼−1.6 (which again is consistent with the −5/3 Kolmogorov
spectral index).

Most of the previous work on PDS of GRBs has been based
on observations with the Burst and Transient Source Experiment
(BATSE) on the Compton Gamma Ray Observatory (Beloborodov
et al. 1998, 2000; Giblin et al. 1998; Lazzati 2002; Borgonovo
et al. 2007) where a relatively modest amount of redshift informa-
tion is available. The launch of the Swift satellite (Gehrels et al.
2004) ushered in a new era of GRB research. Due to its rapidly
disseminated, arcsecond GRB positions, Swift has enabled more
subsequent redshift measurements of GRBs than ever before. The
availability of redshift information enables the study of rest-frame
properties of bursts and provides an opportunity for further explo-
ration of correlations involving burst parameters such as luminosity
and variability.

In this paper, we present a study of Fourier PDS of 206 Swift long
bursts. Unlike previous work, we avoid averaging PDS of multiple
bursts and examine them individually. We have developed a method
to estimate the uncertainties in PDS for each burst. Then we extract
PDS for all the GRBs in the sample and investigate the distribution
of the extracted parameters. The structure of the paper is as follows.
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In Section 2, we discuss our methodology for extracting the PDS. In
Section 3, we present our results for a sample of 206 long bursts and
investigate various correlations between the extracted parameters.
In addition, we propose a new frequency–luminosity relation based
on a sample of 58 GRBs with spectroscopically measured redshifts.
In Section 4, we discuss observational biases of our results. Finally,
in Section 5, we summarize our conclusions. In this work, we have
adopted the standard values for the cosmological parameters: �M =
0.27, �L = 0.73 and the Hubble constant H0 is 70 (km s−1) Mpc−1.
Throughout this paper, the quoted uncertainties are at the 68 per
cent confidence level, unless noted otherwise.

2 DATA A NA LY SIS

2.1 Light-curve extraction

Swift Burst Alert Telescope (BAT) is a highly sensitive, coded
aperture instrument (Barthelmy et al. 2005). BAT uses the shadow
pattern resulting from the coded mask to facilitate few arcminute
localization of gamma-ray sources. In order to generate background-
subtracted LCs, we used a process called mask weighting. The mask
weighting assigns a ray-traced shadow value for each individual
event, which then enables the user to calculate LCs or spectra.

We used the batmaskwtevt and batbinevt tasks in the Swift BAT
FTOOLS to generate mask-weighted, background-subtracted LCs in
the BAT energy range of 15–200 keV. The LCs that are gener-
ated have rates that are measured in counts per second per detector
(count s−1 det−1). In addition, the above tools also generate uncer-
tainties associated with the rates that are calculated by propagation
of errors from raw counts (subject to Poissonian noise). For the BAT
instrument, one can potentially go down to the minimum time bin-
ning of ∼0.1 ms. However, in this work, we used 1-ms time-binned
LCs.

2.2 Fourier analysis

We calculate the Fourier transform, af , of each GRB LC, R(t) (mea-
sured in count s−1 det−1), using a standard fast Fourier transform
(FFT)1 algorithm (Jenkins & Watts 1969; Press et al. 2002). We
used a time segment of the burst LC where the total fluence is
accumulated (i.e. start and end times corresponding to burst T100
which is calculated by the battblocks task). The PDS of each burst
is calculated using Pf = af a∗

f . The power spectra are not normalized
nor are they averaged. In addition, we have employed logarithmic
binning for our power spectra.

This process of treating PDS individually is different from that
of Beloborodov et al. (1998, 2000), Lazzati (2002) and Borgonovo
et al. (2007), as they used some averaging process to obtain the slope
of the red-noise component of the power spectra. The wide variety
of LCs exhibited by GRBs is potentially indicative of different
emission and scattering processes that eventually shape the observed
LCs, and therefore we have avoided averaging power spectra so as
not to compromise this valuable information.

The uncertainties of the individual PDS are calculated as follows.
For each burst, we simulate 100 LCs based on the original LC (Rreal

bin )
and its uncertainty (Rreal error

bin ), i.e.

Rsimulated
bin = Rreal

bin + ζ × Rreal error
bin . (1)

1 We used the FFT routine in the Interactive Data Language (IDL) data
analysis package. http://www.ittvis.com/ProductServices/IDL.aspx

Figure 1. PDS of GRB 081203A. The low-frequency power-law component
is referred to as the ‘red-noise’ component and the flat high-frequency
region is called the ‘white-noise’ component. The inset shows the LC of
GRB 081203A.

Here ζ is a random number generated from a Gaussian distribution
with the mean equal to zero and the standard deviation equal to
1. For each simulated LC, we calculate a PDS. Then we rebin
each PDS logarithmically. The uncertainties in the original PDS
(obtained from the original LC) are derived by taking the standard
deviation of the 100 simulated PDS.

The power spectra for the GRBs in the sample are fitted with
the function depicted in equation (2) (see Fig. 1 for a typical fit).
This function consists of a power-law component (to fit the low-
frequency ‘red-noise’ component) and a constant component (to fit
the flat high-frequency ‘white-noise’ component):

log P (f ) =
{

α(log f − log fth) + log Pw for f ≤ fth

log Pw for f > fth.
(2)

Here f th is the threshold frequency where the red-noise component
intersects the white-noise component of the PDS and Pw is the
white-noise power density.

3 R ESULTS

Out of 451 GRBs which triggered Swift BAT from 2004 December
19 to 2009 December 31, we selected a sample of 226 long GRBs
that show a significant red-noise component above the flat white-
noise region. In Fig. 2, we represent the two samples (the sample
with a clear red-noise component is shown in red boxes and the
sample with no or weak red-noise component is shown in blue
inverted triangles) in a peak-photon-flux versus T100-duration plot.
For the most part, the bursts that do not show a clear red-noise
component are generally either weak or short in duration.

For the selected sample of 226 long GRBs, we fitted the corre-
sponding PDS with a simple power-law behaviour given in equa-
tion (2), using the non-linear least squares routine MPFIT (Markwardt
2009). A typical fit is shown in Fig. 1. Out of the 226 GRBs in the
sample, 20 bursts could not be fitted by a simple power law. These
GRBs were excluded from further analysis. For the final sample of
206 bursts, the distributions of the extracted slopes (α) and threshold
frequencies (f th) are shown in Figs 3 and 4, respectively. The distri-
bution in Fig. 3 has a Gaussian-like shape and peaks around ∼−1.4
with σ of about 0.6. The distribution of threshold frequencies in
Fig. 4 peaks around 1 Hz and also shows a broad distribution. The
distribution of the redshift-corrected f th [i.e. f th(1 + z)], as depicted
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Frequency–luminosity relation 877

Figure 2. The peak photon flux versus the T100 duration. The final sample
with a significant red-noise component is shown in red boxes and the sample
with no or weak red-noise component is shown in blue inverted triangles.
Note that conservative 10 per cent uncertainties were assumed for T100
values.

Figure 3. Histogram of the extracted slopes (α). The distribution shows a
peak around −1.4 ± 0.6.

in the bottom panel of Fig. 4, shows a large dispersion and non-
Gaussian shape. In Fig. 5, we show a plot of α and f th; we see a very
weak positive correlation (0.24 ± 0.02) but we note at this stage of
the analysis that f th has not been corrected for noise contamination
nor has it been corrected for redshift.

There are 76 GRBs in our sample with measured redshifts (spec-
troscopic or otherwise). For this sub-sample, it is interesting to
see whether the extracted parameters are redshift dependent. Fig. 6
shows α (top panel), f th (middle panel) and the redshift-corrected
f th (bottom panel) as a function of redshift. Very weak correlations
are observed between α and redshift and also between f th and red-
shift. However, no significant correlation is observed between f th(1
+ z) and redshift.

In Ukwatta et al. (2009), we proposed a correlation between the
isotropic peak luminosity and the redshift-corrected f th based on
27 GRBs. To investigate this further with a larger sample, we have
selected a sample of 58 bursts with spectroscopically measured
redshifts and good spectral information. For this sample, we have
calculated isotropic peak luminosity as described in Ukwatta et al.
(2010). Based on the availability of spectral information, we have
divided the sample into three sub-samples: ‘Gold’, ‘Silver’ and

Figure 4. A histogram of extracted threshold frequencies (f th) is shown in
the top panel. The histogram peaks around ∼1 Hz. The bottom panel shows
a histogram of redshift-corrected f th for the subset of bursts with redshift
measurements. Both distributions show a large dispersion.

Figure 5. The extracted slope, α, as a function of the threshold frequency,
f th. A very weak positive correlation is observed.

‘Bronze’. The ‘Gold’ sample with 15 bursts have all Band spectral
parameters measured (Band et al. 1993). In the ‘Silver‘ sample (15
bursts), the Ep has been determined by fitting a cut-off power law2

to spectra. These 15 bursts do not have the high-energy spectral
index, β, measured, so we used the mean value of the BATSE β

distribution, which is −2.36 ± 0.31 (Kaneko et al. 2006; Sakamoto
et al. 2009). The ‘Bronze‘ sample, with 28 bursts, does not have a
measured Ep. We have estimated it using the power-law index (�)
of a simple power-law fit as described in Sakamoto et al. (2009).
For these 28 bursts, the low-energy spectral index, α, and the high-
energy spectral index, β, were not known, so we used the mean
values of the BATSE α and β distributions, which are −0.87 ± 0.33
and −2.36 ± 0.31, respectively (Kaneko et al. 2006; Sakamoto et al.
2009).

The isotropic luminosity as a function of the redshift-corrected
threshold frequency is shown in Fig. 7. In the figure, the ‘Gold’,
‘Silver’ and ‘Bronze’ samples are shown in red, blue and green filled
circles, respectively. A clear positive correlation can be seen in the
figure. The Pearson correlation coefficient is 0.77 ± 0.02, where the

2 d N/d E ∼ Eα exp [ − (2 + α)E/Ep ].
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878 T. N. Ukwatta et al.

Figure 6. The slope α (top panel), the threshold frequency (middle panel)
and redshift-corrected f th (bottom panel) as a function of redshift. The
top and the middle panels show very weak correlations while the bottom
panel shows no significant correlation. Note that conservative 10 per cent
uncertainties were assumed for redshift values.

uncertainty was obtained through a Monte Carlo simulation. The
probability that the above correlation occurs due to random chance
is ∼4.5 × 10−9. Our best fit is shown as a red dashed line in Fig. 7
yielding the following relation between Liso and f th:

log Liso = (51.79 ± 0.12) + (1.27 ± 0.12) log[fth(z + 1)]. (3)

To compensate for the large scatter in the plot, the uncertainties
of the fit parameters are multiplied by a factor of

√
χ 2/ndf =√

1766/56 ≈ 6.0, where ndf is the number of degrees of free-
dom. The blue dotted lines indicate the estimated 1σ confidence
level, which is obtained from the cumulative fraction of the residual
distribution taken from 16 to 84 per cent.

Our result for the slope in Fig. 7 is consistent with the value of
1.4 ± 0.2 obtained by Ukwatta et al. (2009) using 27 GRBs. This
is encouraging because the results of Ukwatta et al. (2009) were
obtained using non-mask-weighted event-by-event data instead of
the mask-weighted data that we use in the current work. We also
note that with the increase in the sample size by about a factor of 2,
the correlation coefficient has increased from 0.69 ± 0.03 to 0.77 ±
0.02. The correlation between frequency and luminosity is clearly
intriguing but there remain observational biases which we address
in a later section.

It has been reported previously (Beloborodov et al. 2000) that the
PDS slope is correlated with the burst brightness. In order to check
our sample for this effect, we display in Fig. 8 the slope (α) against

Figure 7. Isotropic peak luminosity as a function of the redshift- corrected
threshold frequency, f th(1 + z). The parameters are correlated with a cor-
relation coefficient of 0.77 ± 0.02 and the best-fitting power law yields an
exponent of 1.27 ± 0.12.

Figure 8. The peak photon flux (top panel) and the fluence (bottom panel)
as a function of α. Very weak negative correlations are observed in both
cases.

brightness indicators: the peak photon flux and the fluence. Very
weak negative correlations are observed in both cases.

The other extracted parameter, the noise crossing threshold fre-
quency (f th) of the PDS, is also expected to depend on the bright-
ness of the GRB. Presumably, the ‘red-noise’ component of the PDS
comes primarily from the GRB but the flat ‘white-noise’ component
can in principle arise from the Poisson noise (intensity fluctuations)
associated with the GRB and the natural background in the field of
view of the detector. For distant and/or intrinsically weak bursts,
noise unrelated to the burst may dominate the observed white-noise
component, thereby overwhelming the red-noise part of the signal.
This, in turn, would make the extraction of the threshold frequency
brightness-dependent. In Fig. 9, we plot the peak photon flux and
the photon fluence as a function of the threshold frequency. The
red dashed line in the top panel of Fig. 9 is the best fit, given by
equation (4), and blue dotted lines indicate a 1σ confidence interval:

log PPF = (0.58 ± 0.03) + (0.82 ± 0.04) log fth. (4)

Indeed, a positive correlation can be seen between f th and the peak
photon flux. However, no significant correlation is observed be-
tween f th and fluence. We discuss this important matter further in
the next section.
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Figure 9. The peak photon flux as a function of threshold frequency (top
panel) and the photon fluence as a function of threshold frequency (bottom
panel). No significant correlation is observed between fluence and f th but a
significant correlation is observed between peak photon flux and f th.

Figure 10. Histogram of the peak photon flux of the sample of 58 bursts
used to generate Fig. 7.

4 D ISCUSSION

It is conceivable that the proposed frequency–luminosity correlation
is a direct result of the observed correlation between f th and the peak
photon flux of the burst (see the top panel of Fig. 9). If this is the
case, then for a statistically significant sample of bursts with similar
apparent brightness, we should not see a correlation between f th

and Liso. In order to select a sample of GRBs with similar apparent
brightness, we plot in Fig. 10 the peak photon flux distribution for
the sample of 58 bursts used to investigate the frequency–luminosity
correlation in Fig. 7. We see from Fig. 10 that about half of the
sample (28 GRBs) have a very similar peak photon flux [0.0 < log
(peak photon flux) < 0.5]. For this subset of bursts, we plotted their
peak photon flux and Liso as a function of f th and the results are
shown in Fig. 11. In the top panel of Fig. 11, it is clear that there
is a significant correlation between f th and Liso with a correlation
coefficient of 0.60 ± 0.06. This implies that the correlation observed
in Fig. 7 [f th(1 + z)–Liso correlation] is not entirely due to the
correlation seen in the top panel of Fig. 9 (f th–peak-photon-flux
correlation). We now correct the f th of this limited sample (with
similar apparent brightness) for redshift to see its effect. Plotted in

Figure 11. The isotropic peak luminosity as a function of threshold fre-
quency (with and without redshift correction) for a sample of bursts with a
narrow apparent brightness range. The red dashed and blue dotted lines are
the same fit curves as shown in Fig. 7. The size of the star is proportional to
the redshift of the burst.

the bottom panel of Fig. 11 are the redshift-corrected data. We note
that the correlation strength increases to a value of 0.78 ± 0.04, in
part due to the natural correlation between redshift and Liso.

In addition, we can approach the issue from the other direction,
i.e. we select a subset of bursts with similar luminosity and ask the
question whether the correlation between the peak photon flux and
f th comes from the proposed fth(1+ z)−Liso correlation. In order to
perform this test, we selected a subset of bursts which have roughly
the same Liso values (51.5 < log Liso < 52.5) and plotted their peak
photon flux as a function of f th. In Fig. 12, we show the peak photon
flux as a function of f th (top panel) and the redshift-corrected f th

(bottom panel). There is clearly a strong correlation between the
two parameters in both panels. It is interesting, however, that after
the redshift correction, the correlation strength drops significantly.
Accordingly, it would appear that the correlation between the peak
photon flux and f th (top panel of Fig. 9) is not entirely due to the
fth(1 + z)−Liso correlation (Fig. 7). Since the spectral power is
proportional to the square of the flux and the PDS follows an f −α

behaviour (see Fig. 3), we expect to see a correlation between the
peak photon flux and f th. Hence, this correlation is in most part
observational.

Now we turn to the question of the dependence of the extracted
threshold frequency on the noise level (NL) of the burst. The obvious
question is how to determine the NL for each burst. One way of
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Figure 12. Peak photon flux as a function of f th (top panel) and redshift-
corrected f th (bottom panel) for a sample bursts with roughly constant lumi-
nosity. The red dashed line in the top panel is the best-fitting line obtained
in Fig. 9 and the blue dotted lines indicate the 1σ confidence interval.

defining the NL is as follows:

Noise level = Std. dev. (detrended LC)

Peak count rate
× 100 per cent. (5)

The detrending of the LC can be done in a number of ways and we
adopted the following method. We generated two LCs of the same
burst with two bin sizes. In order to produce the coarser binned LC,
we chose a time bin size that resulted in at least 100 points in the
burst duration (T100). The other LC may have bin sizes that vary
from 1 ms up to the coarser bin size. Clearly, with the different
binning, the two LCs will have a different number of points. In
order to properly detrend, we need to have the same number of
points in the two LCs. We accomplish this by using a simple linear
interpolation of the coarser binned LC. The interpolated LC is then
subtracted from the finer binned LC to generate the detrended LC.

Using equation (5), we extract an NL for each burst. However,
the extracted NL depends on the bin size used in the detrending
process. This aspect needs to be either removed or accounted for
before the NL of all the bursts can be treated on an equal footing.

The level of the flat white-noise region of the PDS does not
depend on the bin size, i.e. for a given burst the white NL is constant
irrespective of the bin size, and for that matter so too are the extracted
parameters α and f th. In order to remove the bin size dependence in
the extraction of the NL, we modify equation (5) as follows:

Noise level = 1√
N

Std. dev. (detrended LC)

Peak count rate
× 100 per cent. (6)

Here N is the number of data points in the finely binned LC. Our
tests indicate that the results given by equation (6) do not depend
on the time bin size of the LC and provide a robust measure of the
NL of a given burst.

In order to further investigate the dependence of f th on the NL, we
performed additional tests. We simulated different NLs by adding
increasing amounts of Gaussian noise to a burst LC (in this case
GRB 050315). Then we extracted f th values for each setting of the
NL. Our results, the extracted frequency values versus the NL, are
shown in Fig. 13 as a log–log plot. The threshold frequency does
indeed depend on the NL. However, there is a linear relationship
between the logarithmic values of the two quantities. This relation
is important to know because it can be used to correct the extracted

Figure 13. The extracted threshold frequency as a function of the NL in
a log–log scale. The threshold frequency displays a power-law dependence
on the NL of the burst with an index (λ) of −0.84 ± 0.08 for GRB 050315.
The inset shows the time profile of the burst.

Figure 14. Distribution of NLs (top panel) and NL slope, λ (bottom panel)
in the sample.

f th values to some nominal NL that is common to all bursts in the
sample.

By performing the same test on the other bursts in our sample,
we established that the relation between f th and the NL depends
on the profile of the burst, i.e. the slope (λ) of the log–log plot is
different for each burst. Shown in the bottom panel of Fig. 14 is the
distribution of the slopes, λ, obtained for our sample of 58 bursts
used in the f th–Liso relation. Correspondingly, the NL distribution
is shown in the top panel of Fig. 14. This distribution shows a
clear peak around the log value of −0.2 (NL ∼ 0.6) while the λ

distribution peaks around the value of −0.8.
We are now in a position to treat all the bursts in our sample on an

equal footing and test whether the f th–Liso correlation, observed in
Fig. 7, survives. The aim is to extract threshold frequencies which
are consistent with an NL that is common to all the bursts in our
sample. In order to accomplish this, we choose an arbitrary NL of
1.0 (see Fig. 13) and use the following relation to extract a corrected
f th for each burst:

log fth[NL=1] = log fth[NL=burst] − λburst log(NL[NL=burst]). (7)
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Frequency–luminosity relation 881

Figure 15. The threshold frequency versus the noise-corrected threshold
frequency. The two parameters show a strong correlation with a correlation
coefficient of 0.86. The dashed line indicates the equality line of the two
parameters.

Figure 16. The noise-corrected, redshift-corrected threshold frequency ver-
sus NL.

Here, f th[NL=burst] is the extracted threshold frequency for a given
burst, λburst is the NL slope corresponding to the same burst and
NL[NL=burst] is the burst NL determined by equation (6). The correc-
tion procedure is repeated for each burst in our sample. To gauge
the size of the correction, we plot in Fig. 15 (in a log–log scale) the
corrected f th values versus the uncorrected f th. We note that there is
a strong correlation between the two parameters. This is a reflection
of the clustering of the NL and λ seen in Fig. 14. We also plotted
the NL as a function of the noise-corrected, redshift-corrected f th in
Fig. 16. There is no correlation between these two parameters, thus
giving us confidence in the noise correction procedure.

We show in Fig. 17 the noise-corrected threshold frequency–
luminosity relation. As is evident, the relation survives the noise
correction albeit with a somewhat smaller correlation coefficient
of 0.57 ± 0.03. Various correlation coefficients of the relation are
shown in Table 1, where the uncertainties were obtained through
a Monte Carlo simulation. The null probability that the correlation
occurs due to random chance is also given for each coefficient type.

Figure 17. The noise-corrected, redshift-corrected threshold frequency ver-
sus isotropic peak luminosity. The correlation coefficient between the two
parameters is 0.57 ± 0.03. The solid line shows the best-fitting power law
with an index of 1.67 ± 0.01. The dashed line shows the best fit from Fig. 7.

Table 1. Correlation coefficients.

Coefficient type Correlation coefficient Null probability

Pearson’s r 0.57±0.03 1.42 × 10−5

Spearman’s rs 0.58±0.04 1.72 × 10−6

Kendall’s τ 0.43±0.03 2.03 × 10−6

The new best fit is shown as a solid line in Fig. 17 yielding the
following relation between Liso and f th[NL=1]:

log Liso = (52.2 ± 0.1) + (1.67 ± 0.01) log[fth(z + 1)]. (8)

The uncertainties in the fitted parameters are expressed with the
factor of

√
χ 2/ndf = √

1255/56 ≈ 5.0.

5 C O N C L U S I O N

In this paper, we have analysed PDS of 206 GRBs. We fitted each
PDS with a simple power law and determined the red-noise exponent
and the threshold frequency where white noise begins. For a subset
of GRBs, we extracted a frequency–luminosity relationship. For this
sample, we treated all bursts on an equal footing by determining a
common NL, thereby minimizing the potential observational biases.
We summarize the main results of our analysis as follows.

(i) The distribution of the extracted α (slope of the red-noise
component) values peaks around −1.4 and that of f th around 1 Hz.

(ii) The dispersion in the distribution of α is large and so the
Kolmogorov index of −5/3 is accommodated by our analysis.

(iii) The distribution of the redshift-corrected threshold fre-
quency shows a large dispersion and is non-Gaussian in shape.

(iv) Evidence is presented for a possible frequency–luminosity
relationship, i.e. the redshift-corrected f th is correlated with the
isotropic luminosity. The correlation coefficient is 0.57 ± 0.03 and
the best-fitting power law has an index of 1.67 ± 0.01. We ap-
preciate that in reality there may be complicated underlying inter-
relationships involving peak photon flux, f th, and redshift and there-
fore the evidence for the frequency–luminosity relation should be
considered tentative.
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(v) The proposed frequency–luminosity correlation, if con-
firmed, may serve to provide a measure of the intrinsic variability
observed in GRBs.
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